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The classical method of moments is applied to express the dynamic structure factor of model two-
component plasmas in terms of static correlations. The latter are studied using an original algorithm
based on the temperature-Green’s-function method and including the local-field corrections to the

random-phase approximation.
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I. INTRODUCTION

Extensive molecular-dynamics (MD) computations of
time-independent and dynamic correlation functions for
model Coulomb systems over a wide range of thermo-
dynamic conditions characterized by dimensionless pa-
rameters

F'=Be%/a, O=(BE;)"! (1.1)

have been carried out by Hansen et al. [1,2]. Here
B~ '=kpT is the plasma temperature in energy units, a is
the Wigner-Seitz radius, E is the Fermi energy, kj is the
Boltzmann constant, and —e is the electron charge.
Note that the Gell-Mann and Brueckner parameter

ry=a/ay=1.84159T@ ,

ap being the Bohr radius.

Hansen and his collaborators studied the properties of
one- and two-component plasmas and binary ionic sys-
tems. Classical (by definition) one-component plasmas
(OCP) and binary ionic mixtures (BIM) were character-
ized only by the parameter T".

Earlier we applied the results of the approach [3] based
on exact relations and sum rules to the calculation of
dynamical characteristics of OCP and BIM [4]. The
dynamical properties and collective modes in strongly
coupled plasmas have also been investigated within the
quasilocalized-charge model and the mean-field theory
(dynamical and static) [5], and the approach based on the
representation of the Green’s functions as continued frac-
tions [6], but the implementation of the classical method
of moments [4] proved to produce the best overall agree-
ment with the MD data.

The aim of the present paper is to extend the results of
Ref. [4] to the investigation of the ‘“charge-charge” dy-
namic structure factor S, (k,w) of the model semiquantal
two-component plasma (TCP) [2].
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II. THE STRUCTURE FACTOR

The structure factor S, .(k,w) is directly connected to
the inverse longitudinal dielectric function € '(k,w) of
the plasma via the fluctuation-dissipation theorem (FDT)

#ilme™ Yk, w)
T®(k)[1—exp(—Bfiw)] ’

where ®(k)=4me?/k?, and # is the reduced Planck con-
stant.

In order to construct the inverse dielectric function it
is useful to consider the frequency moments of the loss
function [ —Ime ™ !(k,w)/®] [3],

Sk, w)=—

(2.1)

C=—7""[" o Ime (k,0)do . 2.2)
Notice the finiteness of the moment
Colk,0)=[1—€"Y(k,0)] . (2.3)

Since the loss function is an even function of frequency,
all odd-order moments are equal to zero; the second mo-
ment is the f-sum rule

C2=CI)§ (2.4)
(w, is the plasma frequency); high-order even moments

C,, v>4, diverge [3].

Since we deal here with the model system, there is no
need to include the internal transverse electromagnetic
field into its Hamiltonian and there is no high-frequency
compensation of the Coulomb contribution to the fourth
moment due to the magnetic interaction of charges [7].
Thus, the TCP fourth moment can be put as

Cy=wp[1+Q(k)] . 2.5

In contrast to the OCP case, the TCP correction Q (k)
consists of three terms,

Q(k)=K(k)+L(k)+H , (2.6)
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where S (k,0) B
K(k)=3(k /kp 2+ VT/18(ALK2 /A )+A5k%E  2.7) Se(k,0)  [1—exp(—pfio)]
2 4
is the kinetic contribution involving quantal corrections; % wh "oy ) 2.15)

k3 =k3, =kp;=4mne’B, Ap=(#B/2m )%, A, =3/2¢%B,
n=n,=n; is the number density of charged particles, the
indices e and i stand for electrons and ions, the hydrogen-
like model with n,=n; is considered, and m is the elec-
tron mass.

The contribution

H=1hp,(0)= S.:(p)d (2.8)
is due to electron-ion Coulomb correlations, and
L( L PSe (P 11/ (p, K )dp 2.9)
takes into account the electronic correlations,
5 3(k2——p p+k
( ,k):—— . (2.10
p 8 8k2 16pk? e
In Egs. (2.8) and (2.9)
1 . dp
hop(r)=——= ] [S,5(p)—8, Jexplip-r) (2.11)
b \/nanbf[ (P » lexplip 1)’
(a,b=e,i) are the correlation functions, and

ab(p)—(n n_p>

are the static structure factors, where nj is the a-species
(dimensionless) occupation number operator of the states
with momentum 7ip.

The Nevanlinna formula of the classical theory of mo-

ments [8] expresses the response function
wi(z+q)
2

-1 -
(k,z)=1+
z 2(z2—w})+q(z*—w?)

(2.12)

in terms of an R function ¢=g¢q(k,z), analytic in the
upper half-plane Imz >0 and possessing there a positive
imaginary part: Imqg(k,0+in)>0, >0; it also should
satisfy the limiting condition: (q(k,z)/z)—0, as z— o
within the sector 4 <arg(z)<w7— (0<3<w). The fre-
quencies ®,(k) and w,(k) in Eq. (2.12) are defined as
respective ratios of the moments C,,

01=C,/Co=w}[1—€e 1(k,0]7",

, : (2.13)
03=C,/Cy=wl[1+Q(K)] .

There is, obviously, no phenomenological basis for the
choice of an unique g(k,z), which would provide an exact
expression for €~ !(k,w). Nevertheless, to meet our goals
it is sufficient to approximate g(k,z) by its static value
q(k,0)=ih(k), connected to the static value S,.(k,0) of

the dynamic structure factor through Eq. (2.1),
h(k)=(w}— o))} [mBP(k)wiS,, (k,0)] ! (2.14)

so that the normalized dynamic factor

[0*(0®— 03 +hHw?—w?)?]
In the quantal TCP the static structure factor

S tl)y=@2n)"1 [© S (k0o (2.16)

is no longer directly determmed by the static screening
function
€ '(k)=Ree '(k,0)=¢€"'(k,0)

like it was in the OCP,

(2.17)

Sc(c)cp(k)——[eoc}, k—11], (2.18)
kj
and w,(k) and A (k) should be calculated separately along
with w,(k).
Finally, notice that the expression (2.12) with g(k,z)
substituted by .h(k) [Eq. (2.14)] interpolates between
S..(k,0) and the asymptotic expansion

2
wy(k)
“k, a)—»oo)~1+ + 2 (2.19)
»? 1)
The specification of ¢g(k,») including the Perel’-
Eliashberg asymptotic value for e(k,0>>B"'471) [9] is

discussed in Refs. [3,7].

III. CALCULATION OF THE TCP STATIC
CHARACTERISTICS

As was already mentioned, the system under considera-
tion is a hydrogenlike plasma with a partly degenerate
electron subsystem. One can go beyond the random-
phase approximation (RPA) to include the local-field
corrections (LFC’s) by putting

®I(k)
1—®G,(k)T2(k)

k3 /k?

k)= .
€l 1—k3G,(k)/k?

(3.1)

Here IT2(k) is the RPA static polarization operator of
electrons [10], and II%(k) is substituted by its classical
(nondegenerate) value (Bn;); G,(k) are the static local-
field corrections (SLFC’s).

There are various (but still not applicable under arbi-
trary thermodynamic conditions) forms of G,(k) [11].
Here, in order to satisfy both long- and short-range limit-
ing conditions, the electronic SLFC is cast in the
Geldart-Vosko-form [12]

G,(k)=k[ak2+4K%]7 . (3.2)
In particular,
k,=[L1k(p@®2F_, ,(7)]'? (3.3)

is the inverse screening length of the RPA electronic
OCP (EOCP),

efPAK)=1+Kk2/k? (3.4)
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where kg =V3w,m /#ik,, and

[ x"dx
Fm= fo exp(x —7)+1

is the Fermi integral. The chemical potential (n/f) is to
be calculated from the normalization condition

Fipn=3073"7 (3.5)
for the Fermi-Dirac distribution. The parameter « can
be determined from the compressibility sum rule for the
classical EOCP [12,13]
2
a={— k}) [1+44T+B/3+ECcT ™13

-1
+HD0+1 (3.6)
where A=0.8993749, B=—0.2244699, Cc=
—0.017 8746, D=0.517 5753 are the parameters of the

MD —fitted OCP equation of state [14], and £ stems from
the self-consistency condition for G,(k — o),

Jlim G, (k)=1-g,(0), ie., £=[1—g, )", (3.7
and g,(0) is the EOCP radial distribution function,
ge(0)=1+(2ﬂ2n)*‘fo“"pz[se(p)—l]dp , (3.8)

with S, (k) being the EOCP static structure factor.
The ionic SLFC and the static structure factor follow
from the algorithm of Ichimaru et al. [11]:

G(k)=k*[ak2+Lk%,(k)]7", (3.9)

S (k)={1+(k} /k})[e; (k) —G;(K)]} ™',  (3.10)

S, (k)y=[1—e, Y(k)]1S;(k), (3.11)

S, (k)=S,(k)—[1—e, Y(k)]S,(k), 3.12)
where

€,(k)=1+®I2(k)[1— PG, (K)TI2(k)] ™ (3.13)

is the EOCP static dielectric function.

Now, to compute the frequencies w,(k) and w,(k) ac-
cording to Egs. (2.13), (2.6), (2.7), (2.8), and (2.9) it is
sufficient to determine the static structure factor of the
quantal EOCP and to carry out the self-consistency pro-
cedure over g,(0). Keep in mind that the MD results for
the static value of the dynamic structure factor S,.(k,0)
can be used for the determination of S, (k,w) according
to Egs. (2.14) and (2.15).

IV. THE EOCP STRUCTURE FACTOR

To take into account the quantal corrections, one can
calculate the EOCP structure factor S,(k) using the
Green’s-function method,

1 ® I, (k,1)

Se= Bn 2 _THom, k)’ @D

2069
where
I,(k,1)=T(k,1)[1—®G,(k)II%k,1)]7!, 4.2)
2
% dy
9k, l)=—">
km?#? fO 7 exp(®@ p2—n)+1
z+y+iv
Xin |20 4.3)
z—y+iy

and the frequency dependence of the local-field correc-
tion is neglected. In Eq. (4.3) kp=(37?n)'/3 is the Fermi
wave number, z=k /2kg, v,=21'rlm(Bh2kkF)_l, and, in
what follows, Hg(k)=IIS(k,O).

Direct application of Eq. (4.1) is complicated by the
fact that the main summands of the / — « expansion of
I1%(k, 1) behave like

a
1’+13

with a=(B/7)*nE,, E, =#k?/2m,

Hg(k,l—»oo)z 4.4)

5,2 172

IOZ(BEk/Z'TT) 1+%“’®ZTF3/2(7’)

To improve the convergence of Eq. (4.1), one can
rewrite it as

k)= oA
S, (k) Bnlzcoth(ﬂ'lz)
1 MkD) _a 4.5)
Bn 2= | 1+@IL(Kk, 1) 12+15 [’ '
where

1 ={1§+(#Bw, /2m)[1— G (K)]}'/*,

and the number /; of summands in Eq. (4.5) is deter-
mined by the precision of the self-consistency procedure
[over g,(0)] and the computation itself.

The results for the parameter g,(0) for various values
of T and @ are given in Table I. In contrast to the RPA
results, our g,(0) is always positive.

V. DISCUSSION OF RESULTS

The results for all static structure factors are presented
in Tables IT and II1. Since no adjustable parameters were
used, an agreement with the results of Hansen and
McDonald [2] confirms the applicability of our algorithm
to the computation of static characteristics of strongly
coupled hydrogenlike two-component plasmas.

The “molecular-dynamics” simulations of Ref. [2] were
performed for a model hot Boltzmann plasma. Quantum
effects were taken into account only through the use of
#i-corrected effective pair potentials [15]; at short dis-
tances these differ significantly from the bare Coulomb
potential. Thus the collapse characteristic of purely clas-
sical systems of particles of opposite charge was prevent-
ed [2].

Within our quantum-statistical ab initio approach
there was no need to care for the collapse prevention and
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TABLE I. Results of self-consistent computation of the EOCP g,(0) according to Egs. (3.8) and (4.1);
the thermodynamic conditions of Ref. [2] are marked by the asterisk. Numbers in brackets indicate the
power of 10 by which the entry is to be multiplied.

r ® T (K) n, (cm™3) g.(0)
0.100 0.1000 0.1715[9] 0.2579[30] 0.73242
0.100 2.0000 0.8573[7] 0.3224[26] 0.41309
0.500 0.4344* 0.1579[7] 0.2517[26] 0.38457
0.500 1.0860* 0.6315[6] 0.1611[25] 0.25996
1.000 0.1000 0.1715[7] 0.2579[27] 0.67383
1.000 1.0000 0.1715[6] 0.2579[24] 0.15088
2.000 0.2715* 0.1579[6] 0.1611[25] 0.28574

54.10 0.0586 0.1000[4] 0.8099(22] 0.35822
64.35 0.0518 0.8000[3] 0.6980[22] 0.37045
194.0 0.0114 0.4000(3] 0.2390[23] 0.46888

TABLE II. Results for the partial and charge-charge static structure factors (nominators) vs the cor-
responding MD data (denominators) for I'=0.5, ®=0.4344 (r =0.4).

. S.(k) Sie (k) S, (k) S (k)
— ka Salk) Sielk) Seell) Seelk)
9 S (k) SHP(k) SMP(k) SMP(k)
0767 0.6604 0.4373 0.6074 0.1966
' 0.5803 0.4386 0.6590 0.1811
Lo7a 0.7160 0.3319 0.6198 0.3360
: 0.6256 0.3600 0.7390 0.3223
381 0.7770 0.2484 0.6572 0.4687
: 0.6823 0.2813 0.8117 0.4657
|53 0.8041 0.2147 0.6811 0.5272
: 0.7117 0.2454 0.8424 0.5317
TABLE III. Same as in Table II, but for ' =2.0, ®=0.2715 (r,=1).

. S, (k) S, (k) S..(k) S.. (k)
- SMD(k) SMD(k) SMD(k) SMD(k)
0767 0.7206 0.6583 0.7790 0.0915

: 0.5638 0.5716 0.7191 0.0598
o7 0.6697 0.5327 0.7372 0.1708
: 0.5131 0.5000 0.7382 0.1257
381 0.6608 0.4303 0.7291 0.2647
: 0.5065 0.4274 0.7766 0.2142
s34 0.6679 0.3875 0.7364 0.3146
. 0.4171 0.3937 0.7989 0.2643

TABLE IV. Frequency moments of S..(k,®) in units in which w, =1, I'=0.5, ®=0.4344 (r,=0.4).
Compare Sy(k) to the corresponding S,. (k) and SMP(k).

q=ka S_,(k) So(k) S, (k) S, (k) S;3(k) S4(k)
0.767 0.115 0.195 0.134 0.282 0.419 0.935
1.074 0.192 0.333 0.263 0.641 1.306 3.338
1.381 0.262 0.464 0.434 1.251 3.354 10.220

1.534 0.291 0.521 0.534 1.687 5.121 17.049
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FIG. 1. Results for the normalized dynamic structure

factor charge-charge S, (k,0)/S.(k,0) of Eq. (2.15) vs w/w,

for 1—-k=0.767/a, 2—k=1.074/a, 3—k=1.381/a, 4—k
=1.534/a,and I'=0.5, ®=0.4344 (r,=0.4).
to modify the screened interaction potential

[ —4me?/k?e(k)] beyond the employed approximation for
the LFC’s. We believe that this approach could be ap-
plied to cold and dense plasmas as well.

There is a distinction between our results for the dy-
namic ‘‘charge-charge” structure factor (2.15) (see Figs. 1
and 2) and the corresponding MD data [2]. In particular,
the high-frequency Langmuir plasma mode manifests it-
self in our results much stronger than in Ref. [2]: a sharp
plasmon peak persists for all wave numbers considered in
Ref. [2]. Low damping of the propagating mode could be
attributed to our negligence of the frequency dependence
of the interpolation function ¢(k,w) substituted by its
zero-frequency value ih(k) (2.14). To test our dynamic
results we calculated the dimensionless zeroth-frequency
moment of our S, (k,w),

Sotk)=2n)"' [ 7 S (k,0)dw , (5.1

which should be equal to the static structure factor of Eq.
(2.16),

S(k)=[S,, (k)+S;(k)—28,,(k)]/2 (5.2)
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FIG. 2. Results for the normalized dynamic structure
factor charge-charge S..(k,w)/S.(k,0) of Eq. (2.15) vs w/w,
for 1—k=0.767/a, 2—k=1.074/a, 3—k=1.381/a, 4—k
=1.534/a,and I'=2.0, ®=0.2715 (r,=1.0).

computed independently using our ‘‘static” algorithm.
One can notice from Tables II-V that the disagreement
among (5.1), (5.2), and the corresponding MD quantity
SMP(k) is within numerical errors.

In addition, the frequency moments

S,0=02n) " [T oS (k,0)do, v=—1,1,2,3,4
(5.3)

were computed using our data for the dynamic structure
factor S, (k,w) [see Tables IV and V]. The odd moments
S_1,8,S3 proved to have nonzero values. This is due to
the fact that within our quantum-statistical model the dy-
namic structure factor S..(k,w) possesses no parity.
Within the effectively classical model, employed by Han-
sen and McDonald [2] to compute SMP(k,w), its odd-
frequency moments are all equal to zero, and even mo-
ments are directly connected to the classical limiting
values of the moments (2.2)

S (k)y=(k?/2k3)CS(k), v=0,1,2. (5.4)

For a quantal system one can deduce from the FDT

TABLE V. Same as in Table IV, but for ' =2.0, ®=0.2715 (r,=1).

q=ka S_1(k) So(k) Si(k) S,(k) Sy(k) S4(k)
0.767 0.082 0.084 0.085 0.122 0.183 0.327
1.074 0.157 0.159 0.167 0.268 0.459 0.888
1.381 0.249 0.248 0.276 0.516 1.023 2.207
1.534 0.299 0.294 0.340 0.697 1.496 3.403
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(2.1), using the relation

S (k,—w)=exp(—phw)S  (k,») , (5.5)
an analogous expression for the odd moments,
S,,_1(k)=(#B/4)(k /kp)*C,, (k) , v=0,1,2. (5.6)

It follows from Eq. (2.6) that for a quantal system

S;(k) /S (k)=w3(k) ,

(5.7)

S (k)/S _(k)=w}(k) .
In the classical approximation Egs. (5.7) are replaced by
S k) /85 (k)= (3(k))?,

(5.8)
S5 (k) /8§ (k)= (ai(k) .
Equations (5.7), but not Egs. (5.8), are directly verified by
the data of Tables IV-VI.

Thus, we believe that in quantal strongly coupled
Coulomb systems the collisional damping of plasmons is
sufficiently low so that the Langmuir mode persists at
least until quite high values of the wave number k ~qg ~ !,
and its high damping demonstrated by the MD computa-
tions was just due to the neglect of quantum-statistical
effects.

We compared positions of high-frequency peaks on the
graphs of Figs. 1 and 2 to the data for the frequency
w,(k) [Table VI], and concluded that at least for the con-
ditions considered the dispersion law of the plasma mode
is very well approximated by the k& dependence of w,(k)
[Eq. (2.13)].

Finally, since higher-order frequency moments of the
energy-loss function C,, (k) diverge for v>2 [9,3,5], the
presented results can be improved only by a specification
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TABLE VI. Values of normalized frequencies w,(k)/w,
(nominators) and w,(k)/w, (denominators) for various values of
k and thermodynamics conditions. Compare w,(k)/w, to the
positions of peaks (near w,) of S..(k,w)/S..(k,0) plots at Figs. 1
and 2.

r;e

q=ka 0.5;0.4344 2.0;0.2715
0.767 1.081 1.016
’ 1.735 1.509
1.160 1.031
1.074 —_— —
2.092 1.701
1.381 1.263 1.052
’ 2.524 1.970
1.534 1.322 1.066
) 2.764 2.134

of the interpolation function g(k,®) [7]. In conclusion,
the present approach can also be used to calculate other
dynamic properties of nonideal plasmas, like the stopping
power, etc.
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